Information on Result #1441448
Linear OOA(767, 117681, F7, 2, 12) (dual of [(117681, 2), 235295, 13]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(767, 117681, F7, 12) (dual of [117681, 117614, 13]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(765, 117677, F7, 12) (dual of [117677, 117612, 13]-code), using
- construction X applied to Ce(11) ⊂ Ce(7) [i] based on
- linear OA(761, 117649, F7, 12) (dual of [117649, 117588, 13]-code), using an extension Ce(11) of the primitive narrow-sense BCH-code C(I) with length 117648 = 76−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(737, 117649, F7, 8) (dual of [117649, 117612, 9]-code), using an extension Ce(7) of the primitive narrow-sense BCH-code C(I) with length 117648 = 76−1, defining interval I = [1,7], and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(74, 28, F7, 3) (dual of [28, 24, 4]-code or 28-cap in PG(3,7)), using
- construction X applied to Ce(11) ⊂ Ce(7) [i] based on
- linear OA(765, 117679, F7, 11) (dual of [117679, 117614, 12]-code), using Gilbert–Varšamov bound and bm = 765 > Vbs−1(k−1) = 8482 860616 671076 086097 826866 924808 270876 233137 478993 [i]
- linear OA(70, 2, F7, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(765, 117677, F7, 12) (dual of [117677, 117612, 13]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(767, 58840, F7, 3, 12) (dual of [(58840, 3), 176453, 13]-NRT-code) | [i] | OOA Folding |