Information on Result #1456418
Linear OOA(2569, 841, F25, 2, 31) (dual of [(841, 2), 1613, 32]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(2569, 841, F25, 31) (dual of [841, 772, 32]-code), using
- 202 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 4 times 0, 1, 9 times 0, 1, 18 times 0, 1, 34 times 0, 1, 55 times 0, 1, 74 times 0) [i] based on linear OA(2558, 628, F25, 31) (dual of [628, 570, 32]-code), using
- construction XX applied to C1 = C([623,28]), C2 = C([0,29]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([623,29]) [i] based on
- linear OA(2556, 624, F25, 30) (dual of [624, 568, 31]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,28}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(2556, 624, F25, 30) (dual of [624, 568, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(2558, 624, F25, 31) (dual of [624, 566, 32]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2554, 624, F25, 29) (dual of [624, 570, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([623,28]), C2 = C([0,29]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([623,29]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.