Information on Result #1458191
Linear OOA(2751, 1012, F27, 2, 22) (dual of [(1012, 2), 1973, 23]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(2751, 1012, F27, 22) (dual of [1012, 961, 23]-code), using
- 272 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 0, 0, 1, 13 times 0, 1, 37 times 0, 1, 82 times 0, 1, 131 times 0) [i] based on linear OA(2743, 732, F27, 22) (dual of [732, 689, 23]-code), using
- construction XX applied to C1 = C([727,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([727,20]) [i] based on
- linear OA(2741, 728, F27, 21) (dual of [728, 687, 22]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,19}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2741, 728, F27, 21) (dual of [728, 687, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2743, 728, F27, 22) (dual of [728, 685, 23]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(2739, 728, F27, 20) (dual of [728, 689, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([727,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([727,20]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.