Information on Result #1462790
Linear OOA(6449, 589, F64, 2, 26) (dual of [(589, 2), 1129, 27]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(6449, 589, F64, 26) (dual of [589, 540, 27]-code), using
- construction XX applied to C1 = C([51,75]), C2 = C([50,74]), C3 = C1 + C2 = C([51,74]), and C∩ = C1 ∩ C2 = C([50,75]) [i] based on
- linear OA(6447, 585, F64, 25) (dual of [585, 538, 26]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {51,52,…,75}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(6447, 585, F64, 25) (dual of [585, 538, 26]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {50,51,…,74}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(6449, 585, F64, 26) (dual of [585, 536, 27]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {50,51,…,75}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(6445, 585, F64, 24) (dual of [585, 540, 25]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {51,52,…,74}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(6449, 294, F64, 3, 26) (dual of [(294, 3), 833, 27]-NRT-code) | [i] | OOA Folding |