Information on Result #1463684
Linear OOA(8133, 332, F81, 2, 19) (dual of [(332, 2), 631, 20]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(8133, 332, F81, 19) (dual of [332, 299, 20]-code), using
- construction XX applied to C1 = C([33,50]), C2 = C([32,49]), C3 = C1 + C2 = C([33,49]), and C∩ = C1 ∩ C2 = C([32,50]) [i] based on
- linear OA(8131, 328, F81, 18) (dual of [328, 297, 19]-code), using the BCH-code C(I) with length 328 | 812−1, defining interval I = {33,34,…,50}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(8131, 328, F81, 18) (dual of [328, 297, 19]-code), using the BCH-code C(I) with length 328 | 812−1, defining interval I = {32,33,…,49}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(8133, 328, F81, 19) (dual of [328, 295, 20]-code), using the BCH-code C(I) with length 328 | 812−1, defining interval I = {32,33,…,50}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(8129, 328, F81, 17) (dual of [328, 299, 18]-code), using the BCH-code C(I) with length 328 | 812−1, defining interval I = {33,34,…,49}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.