Information on Result #1464316
Linear OOA(8180, 3514, F81, 2, 37) (dual of [(3514, 2), 6948, 38]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(8180, 3514, F81, 37) (dual of [3514, 3434, 38]-code), using
- discarding factors / shortening the dual code based on linear OA(8180, 6585, F81, 37) (dual of [6585, 6505, 38]-code), using
- construction X applied to C([0,18]) ⊂ C([0,14]) [i] based on
- linear OA(8173, 6562, F81, 37) (dual of [6562, 6489, 38]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 814−1, defining interval I = [0,18], and minimum distance d ≥ |{−18,−17,…,18}|+1 = 38 (BCH-bound) [i]
- linear OA(8157, 6562, F81, 29) (dual of [6562, 6505, 30]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 814−1, defining interval I = [0,14], and minimum distance d ≥ |{−14,−13,…,14}|+1 = 30 (BCH-bound) [i]
- linear OA(817, 23, F81, 7) (dual of [23, 16, 8]-code or 23-arc in PG(6,81)), using
- discarding factors / shortening the dual code based on linear OA(817, 81, F81, 7) (dual of [81, 74, 8]-code or 81-arc in PG(6,81)), using
- Reed–Solomon code RS(74,81) [i]
- discarding factors / shortening the dual code based on linear OA(817, 81, F81, 7) (dual of [81, 74, 8]-code or 81-arc in PG(6,81)), using
- construction X applied to C([0,18]) ⊂ C([0,14]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8180, 1757, F81, 4, 37) (dual of [(1757, 4), 6948, 38]-NRT-code) | [i] | OOA Folding |