Information on Result #1485437
Linear OOA(598, 1999, F5, 3, 22) (dual of [(1999, 3), 5899, 23]-NRT-code), using OOA 2-folding based on linear OOA(598, 3998, F5, 2, 22) (dual of [(3998, 2), 7898, 23]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(598, 3998, F5, 22) (dual of [3998, 3900, 23]-code), using
- 856 step Varšamov–Edel lengthening with (ri) = (3, 0, 1, 0, 0, 0, 1, 8 times 0, 1, 18 times 0, 1, 35 times 0, 1, 62 times 0, 1, 102 times 0, 1, 152 times 0, 1, 207 times 0, 1, 258 times 0) [i] based on linear OA(586, 3130, F5, 22) (dual of [3130, 3044, 23]-code), using
- construction X applied to Ce(21) ⊂ Ce(20) [i] based on
- linear OA(586, 3125, F5, 22) (dual of [3125, 3039, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 3124 = 55−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(581, 3125, F5, 21) (dual of [3125, 3044, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 3124 = 55−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(50, 5, F5, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(21) ⊂ Ce(20) [i] based on
- 856 step Varšamov–Edel lengthening with (ri) = (3, 0, 1, 0, 0, 0, 1, 8 times 0, 1, 18 times 0, 1, 35 times 0, 1, 62 times 0, 1, 102 times 0, 1, 152 times 0, 1, 207 times 0, 1, 258 times 0) [i] based on linear OA(586, 3130, F5, 22) (dual of [3130, 3044, 23]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.