Information on Result #1490589
Linear OOA(8149, 16401, F8, 3, 33) (dual of [(16401, 3), 49054, 34]-NRT-code), using OOA 2-folding based on linear OOA(8149, 32802, F8, 2, 33) (dual of [(32802, 2), 65455, 34]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8149, 32802, F8, 33) (dual of [32802, 32653, 34]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(8148, 32800, F8, 33) (dual of [32800, 32652, 34]-code), using
- construction X applied to Ce(32) ⊂ Ce(26) [i] based on
- linear OA(8141, 32768, F8, 33) (dual of [32768, 32627, 34]-code), using an extension Ce(32) of the primitive narrow-sense BCH-code C(I) with length 32767 = 85−1, defining interval I = [1,32], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(8116, 32768, F8, 27) (dual of [32768, 32652, 28]-code), using an extension Ce(26) of the primitive narrow-sense BCH-code C(I) with length 32767 = 85−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(87, 32, F8, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(32) ⊂ Ce(26) [i] based on
- linear OA(8148, 32801, F8, 32) (dual of [32801, 32653, 33]-code), using Gilbert–Varšamov bound and bm = 8148 > Vbs−1(k−1) = 1 857832 232681 214400 709234 878323 432923 079945 778427 255209 011484 650678 560308 134648 133040 055946 013309 375184 399907 321824 270471 656431 549695 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(8148, 32800, F8, 33) (dual of [32800, 32652, 34]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.