Information on Result #1493107
Linear OOA(9101, 6568, F9, 3, 25) (dual of [(6568, 3), 19603, 26]-NRT-code), using OOA 2-folding based on linear OOA(9101, 13136, F9, 2, 25) (dual of [(13136, 2), 26171, 26]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(9101, 13136, F9, 25) (dual of [13136, 13035, 26]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9100, 13134, F9, 25) (dual of [13134, 13034, 26]-code), using
- trace code [i] based on linear OA(8150, 6567, F81, 25) (dual of [6567, 6517, 26]-code), using
- construction X applied to C([0,12]) ⊂ C([0,11]) [i] based on
- linear OA(8149, 6562, F81, 25) (dual of [6562, 6513, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 814−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(8145, 6562, F81, 23) (dual of [6562, 6517, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 6562 | 814−1, defining interval I = [0,11], and minimum distance d ≥ |{−11,−10,…,11}|+1 = 24 (BCH-bound) [i]
- linear OA(811, 5, F81, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(811, s, F81, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to C([0,12]) ⊂ C([0,11]) [i] based on
- trace code [i] based on linear OA(8150, 6567, F81, 25) (dual of [6567, 6517, 26]-code), using
- linear OA(9100, 13135, F9, 24) (dual of [13135, 13035, 25]-code), using Gilbert–Varšamov bound and bm = 9100 > Vbs−1(k−1) = 1184 216735 762336 019216 232926 170958 733094 706304 979372 088529 823973 108738 299187 163175 838891 741489 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(9100, 13134, F9, 25) (dual of [13134, 13034, 26]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.