Information on Result #1534797
Linear OOA(480, 1054, F4, 3, 20) (dual of [(1054, 3), 3082, 21]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(480, 1054, F4, 20) (dual of [1054, 974, 21]-code), using
- 17 step Varšamov–Edel lengthening with (ri) = (2, 0, 1, 4 times 0, 1, 9 times 0) [i] based on linear OA(476, 1033, F4, 20) (dual of [1033, 957, 21]-code), using
- construction XX applied to C1 = C([1022,17]), C2 = C([0,18]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([1022,18]) [i] based on
- linear OA(471, 1023, F4, 19) (dual of [1023, 952, 20]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,17}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(471, 1023, F4, 19) (dual of [1023, 952, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(476, 1023, F4, 20) (dual of [1023, 947, 21]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,18}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(466, 1023, F4, 18) (dual of [1023, 957, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(40, 5, F4, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(40, 5, F4, 0) (dual of [5, 5, 1]-code) (see above)
- construction XX applied to C1 = C([1022,17]), C2 = C([0,18]), C3 = C1 + C2 = C([0,17]), and C∩ = C1 ∩ C2 = C([1022,18]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.