Information on Result #1552819
Linear OOA(793, 117688, F7, 3, 17) (dual of [(117688, 3), 352971, 18]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(793, 117688, F7, 17) (dual of [117688, 117595, 18]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(792, 117686, F7, 17) (dual of [117686, 117594, 18]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(785, 117649, F7, 17) (dual of [117649, 117564, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 117648 = 76−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(755, 117649, F7, 11) (dual of [117649, 117594, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 117648 = 76−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(77, 37, F7, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(77, 43, F7, 5) (dual of [43, 36, 6]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(792, 117687, F7, 16) (dual of [117687, 117595, 17]-code), using Gilbert–Varšamov bound and bm = 792 > Vbs−1(k−1) = 4132 976211 996634 955889 500582 555088 850438 019210 954011 272925 744915 260734 160913 [i]
- linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(792, 117686, F7, 17) (dual of [117686, 117594, 18]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(793, 39229, F7, 21, 17) (dual of [(39229, 21), 823716, 18]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |