Information on Result #1615322
Linear OOA(25626, 790, F256, 4, 15) (dual of [(790, 4), 3134, 16]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(25626, 790, F256, 15) (dual of [790, 764, 16]-code), using
- 14 step Varšamov–Edel lengthening with (ri) = (1, 13 times 0) [i] based on linear OA(25625, 775, F256, 15) (dual of [775, 750, 16]-code), using
- construction XX applied to C1 = C([251,264]), C2 = C([250,263]), C3 = C1 + C2 = C([251,263]), and C∩ = C1 ∩ C2 = C([250,264]) [i] based on
- linear OA(25623, 771, F256, 14) (dual of [771, 748, 15]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {251,252,…,264}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(25623, 771, F256, 14) (dual of [771, 748, 15]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {250,251,…,263}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(25625, 771, F256, 15) (dual of [771, 746, 16]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {250,251,…,264}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(25621, 771, F256, 13) (dual of [771, 750, 14]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {251,252,…,263}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(2560, s, F256, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([251,264]), C2 = C([250,263]), C3 = C1 + C2 = C([251,263]), and C∩ = C1 ∩ C2 = C([250,264]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.