Information on Result #1616090

Linear OOA(2223, 2097415, F2, 4, 17) (dual of [(2097415, 4), 8389437, 18]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(238, 265, F2, 4, 8) (dual of [(265, 4), 1022, 9]-NRT-code), using
    • embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OOA(238, 265, F2, 2, 8) (dual of [(265, 2), 492, 9]-NRT-code), using
      • OOA 2-folding [i] based on linear OA(238, 530, F2, 8) (dual of [530, 492, 9]-code), using
        • 1 times truncation [i] based on linear OA(239, 531, F2, 9) (dual of [531, 492, 10]-code), using
          • construction XX applied to C1 = C([509,4]), C2 = C([0,6]), C3 = C1 + C2 = C([0,4]), and C∩ = C1 ∩ C2 = C([509,6]) [i] based on
            1. linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
            2. linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
            3. linear OA(237, 511, F2, 9) (dual of [511, 474, 10]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,6}, and designed minimum distance d ≥ |I|+1 = 10 [i]
            4. linear OA(219, 511, F2, 5) (dual of [511, 492, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
            5. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
            6. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
  2. linear OOA(2185, 2097150, F2, 4, 17) (dual of [(2097150, 4), 8388415, 18]-NRT-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

None.