Information on Result #1651791
Linear OOA(3241, 177167, F3, 5, 29) (dual of [(177167, 5), 885594, 30]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OOA(3241, 177167, F3, 3, 29) (dual of [(177167, 3), 531260, 30]-NRT-code), using
- OOA 3-folding [i] based on linear OA(3241, 531501, F3, 29) (dual of [531501, 531260, 30]-code), using
- 1 times code embedding in larger space [i] based on linear OA(3240, 531500, F3, 29) (dual of [531500, 531260, 30]-code), using
- construction X applied to Ce(28) ⊂ Ce(22) [i] based on
- linear OA(3229, 531441, F3, 29) (dual of [531441, 531212, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(3181, 531441, F3, 23) (dual of [531441, 531260, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(311, 59, F3, 5) (dual of [59, 48, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(311, 85, F3, 5) (dual of [85, 74, 6]-code), using
- construction X applied to Ce(28) ⊂ Ce(22) [i] based on
- 1 times code embedding in larger space [i] based on linear OA(3240, 531500, F3, 29) (dual of [531500, 531260, 30]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3242, 177167, F3, 5, 29) (dual of [(177167, 5), 885593, 30]-NRT-code) | [i] | OOA Duplication | |
2 | Linear OOA(3243, 177167, F3, 5, 29) (dual of [(177167, 5), 885592, 30]-NRT-code) | [i] | ||
3 | Linear OOA(3241, 59055, F3, 35, 29) (dual of [(59055, 35), 2066684, 30]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |