Information on Result #1672566
Linear OOA(25615, 775, F256, 6, 9) (dual of [(775, 6), 4635, 10]-NRT-code), using embedding of OOA with Gilbert–Varšamov bound based on linear OA(25615, 775, F256, 9) (dual of [775, 760, 10]-code), using
- construction XX applied to C1 = C([254,261]), C2 = C([253,260]), C3 = C1 + C2 = C([254,260]), and C∩ = C1 ∩ C2 = C([253,261]) [i] based on
- linear OA(25613, 771, F256, 8) (dual of [771, 758, 9]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {254,255,…,261}, and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(25613, 771, F256, 8) (dual of [771, 758, 9]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {253,254,…,260}, and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(25615, 771, F256, 9) (dual of [771, 756, 10]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {253,254,…,261}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(25611, 771, F256, 7) (dual of [771, 760, 8]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {254,255,…,260}, and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(2560, s, F256, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.