Information on Result #1803952
Digital (26, 45, 993)-net over F25, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(2545, 993, F25, 19) (dual of [993, 948, 20]-code), using
- 357 step Varšamov–Edel lengthening with (ri) = (3, 0, 0, 1, 7 times 0, 1, 23 times 0, 1, 57 times 0, 1, 109 times 0, 1, 153 times 0) [i] based on linear OA(2537, 628, F25, 19) (dual of [628, 591, 20]-code), using
- construction XX applied to C1 = C([623,16]), C2 = C([0,17]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([623,17]) [i] based on
- linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2537, 624, F25, 19) (dual of [624, 587, 20]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,17}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([623,16]), C2 = C([0,17]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([623,17]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.