Information on Result #1806822
Digital (41, 75, 927)-net over F27, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(2775, 927, F27, 34) (dual of [927, 852, 35]-code), using
- 184 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 0, 0, 0, 1, 7 times 0, 1, 16 times 0, 1, 29 times 0, 1, 49 times 0, 1, 72 times 0) [i] based on linear OA(2764, 732, F27, 34) (dual of [732, 668, 35]-code), using
- construction XX applied to C1 = C([727,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([727,32]) [i] based on
- linear OA(2762, 728, F27, 33) (dual of [728, 666, 34]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2762, 728, F27, 33) (dual of [728, 666, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2764, 728, F27, 34) (dual of [728, 664, 35]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,32}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2760, 728, F27, 32) (dual of [728, 668, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([727,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([727,32]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.