Information on Result #2156207

There is no linear OA(232, 40, F2, 16) (dual of [40, 8, 17]-code), because adding a parity check bit would yield linear OA(233, 41, F2, 17) (dual of [41, 8, 18]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(233, 40, F2, 2, 17) (dual of [(40, 2), 47, 18]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(235, 40, F2, 2, 19) (dual of [(40, 2), 45, 20]-NRT-code) [i]
3No linear OOA(232, 40, F2, 2, 16) (dual of [(40, 2), 48, 17]-NRT-code) [i]Depth Reduction
4No linear OOA(232, 40, F2, 3, 16) (dual of [(40, 3), 88, 17]-NRT-code) [i]
5No linear OOA(232, 40, F2, 4, 16) (dual of [(40, 4), 128, 17]-NRT-code) [i]
6No linear OOA(232, 40, F2, 5, 16) (dual of [(40, 5), 168, 17]-NRT-code) [i]
7No linear OOA(232, 40, F2, 6, 16) (dual of [(40, 6), 208, 17]-NRT-code) [i]
8No linear OOA(232, 40, F2, 7, 16) (dual of [(40, 7), 248, 17]-NRT-code) [i]
9No linear OOA(232, 40, F2, 8, 16) (dual of [(40, 8), 288, 17]-NRT-code) [i]
10No digital (16, 32, 40)-net over F2 [i]Extracting Embedded Orthogonal Array