Information on Result #2156226

There is no linear OA(258, 66, F2, 30) (dual of [66, 8, 31]-code), because adding a parity check bit would yield linear OA(259, 67, F2, 31) (dual of [67, 8, 32]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(258, 66, F2, 2, 30) (dual of [(66, 2), 74, 31]-NRT-code) [i]Depth Reduction
2No linear OOA(258, 66, F2, 3, 30) (dual of [(66, 3), 140, 31]-NRT-code) [i]
3No linear OOA(258, 66, F2, 4, 30) (dual of [(66, 4), 206, 31]-NRT-code) [i]
4No linear OOA(258, 66, F2, 5, 30) (dual of [(66, 5), 272, 31]-NRT-code) [i]
5No linear OOA(258, 66, F2, 6, 30) (dual of [(66, 6), 338, 31]-NRT-code) [i]
6No linear OOA(258, 66, F2, 7, 30) (dual of [(66, 7), 404, 31]-NRT-code) [i]
7No linear OOA(258, 66, F2, 8, 30) (dual of [(66, 8), 470, 31]-NRT-code) [i]
8No linear OA(2118, 127, F2, 60) (dual of [127, 9, 61]-code) [i]Residual Code