Information on Result #2156234
There is no linear OA(267, 75, F2, 34) (dual of [75, 8, 35]-code), because adding a parity check bit would yield linear OA(268, 76, F2, 35) (dual of [76, 8, 36]-code), but
- “BJV†bound on codes from Brouwer’s database [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(268, 75, F2, 2, 35) (dual of [(75, 2), 82, 36]-NRT-code) | [i] | m-Reduction for OOAs | |
2 | No linear OOA(270, 75, F2, 2, 37) (dual of [(75, 2), 80, 38]-NRT-code) | [i] | ||
3 | No linear OOA(271, 75, F2, 2, 38) (dual of [(75, 2), 79, 39]-NRT-code) | [i] | ||
4 | No linear OOA(272, 75, F2, 2, 39) (dual of [(75, 2), 78, 40]-NRT-code) | [i] | ||
5 | No linear OOA(273, 75, F2, 2, 40) (dual of [(75, 2), 77, 41]-NRT-code) | [i] | ||
6 | No linear OOA(274, 75, F2, 2, 41) (dual of [(75, 2), 76, 42]-NRT-code) | [i] | ||
7 | No linear OOA(275, 75, F2, 2, 42) (dual of [(75, 2), 75, 43]-NRT-code) | [i] | ||
8 | No linear OOA(276, 75, F2, 2, 43) (dual of [(75, 2), 74, 44]-NRT-code) | [i] | ||
9 | No linear OOA(277, 75, F2, 2, 44) (dual of [(75, 2), 73, 45]-NRT-code) | [i] | ||
10 | No linear OOA(278, 75, F2, 2, 45) (dual of [(75, 2), 72, 46]-NRT-code) | [i] | ||
11 | No linear OOA(279, 75, F2, 2, 46) (dual of [(75, 2), 71, 47]-NRT-code) | [i] | ||
12 | No linear OOA(280, 75, F2, 2, 47) (dual of [(75, 2), 70, 48]-NRT-code) | [i] | ||
13 | No linear OOA(281, 75, F2, 2, 48) (dual of [(75, 2), 69, 49]-NRT-code) | [i] | ||
14 | No linear OOA(282, 75, F2, 2, 49) (dual of [(75, 2), 68, 50]-NRT-code) | [i] | ||
15 | No linear OOA(283, 75, F2, 2, 50) (dual of [(75, 2), 67, 51]-NRT-code) | [i] | ||
16 | No linear OOA(284, 75, F2, 2, 51) (dual of [(75, 2), 66, 52]-NRT-code) | [i] | ||
17 | No linear OOA(285, 75, F2, 2, 52) (dual of [(75, 2), 65, 53]-NRT-code) | [i] | ||
18 | No linear OOA(286, 75, F2, 2, 53) (dual of [(75, 2), 64, 54]-NRT-code) | [i] | ||
19 | No linear OOA(287, 75, F2, 2, 54) (dual of [(75, 2), 63, 55]-NRT-code) | [i] | ||
20 | No linear OOA(288, 75, F2, 2, 55) (dual of [(75, 2), 62, 56]-NRT-code) | [i] | ||
21 | No linear OOA(289, 75, F2, 2, 56) (dual of [(75, 2), 61, 57]-NRT-code) | [i] | ||
22 | No linear OOA(290, 75, F2, 2, 57) (dual of [(75, 2), 60, 58]-NRT-code) | [i] | ||
23 | No linear OOA(291, 75, F2, 2, 58) (dual of [(75, 2), 59, 59]-NRT-code) | [i] | ||
24 | No linear OOA(292, 75, F2, 2, 59) (dual of [(75, 2), 58, 60]-NRT-code) | [i] | ||
25 | No linear OOA(293, 75, F2, 2, 60) (dual of [(75, 2), 57, 61]-NRT-code) | [i] | ||
26 | No linear OOA(294, 75, F2, 2, 61) (dual of [(75, 2), 56, 62]-NRT-code) | [i] | ||
27 | No linear OOA(295, 75, F2, 2, 62) (dual of [(75, 2), 55, 63]-NRT-code) | [i] | ||
28 | No linear OOA(296, 75, F2, 2, 63) (dual of [(75, 2), 54, 64]-NRT-code) | [i] | ||
29 | No linear OOA(297, 75, F2, 2, 64) (dual of [(75, 2), 53, 65]-NRT-code) | [i] | ||
30 | No linear OOA(298, 75, F2, 2, 65) (dual of [(75, 2), 52, 66]-NRT-code) | [i] | ||
31 | No linear OOA(267, 75, F2, 2, 34) (dual of [(75, 2), 83, 35]-NRT-code) | [i] | Depth Reduction | |
32 | No linear OOA(267, 75, F2, 3, 34) (dual of [(75, 3), 158, 35]-NRT-code) | [i] | ||
33 | No linear OOA(267, 75, F2, 4, 34) (dual of [(75, 4), 233, 35]-NRT-code) | [i] | ||
34 | No linear OOA(267, 75, F2, 5, 34) (dual of [(75, 5), 308, 35]-NRT-code) | [i] | ||
35 | No linear OOA(267, 75, F2, 6, 34) (dual of [(75, 6), 383, 35]-NRT-code) | [i] | ||
36 | No linear OOA(267, 75, F2, 7, 34) (dual of [(75, 7), 458, 35]-NRT-code) | [i] | ||
37 | No linear OOA(267, 75, F2, 8, 34) (dual of [(75, 8), 533, 35]-NRT-code) | [i] | ||
38 | No digital (33, 67, 75)-net over F2 | [i] | Extracting Embedded Orthogonal Array | |
39 | No linear OA(2135, 144, F2, 68) (dual of [144, 9, 69]-code) | [i] | Residual Code |