Information on Result #2156237

There is no linear OA(272, 82, F2, 36) (dual of [82, 10, 37]-code), because adding a parity check bit would yield linear OA(273, 83, F2, 37) (dual of [83, 10, 38]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(273, 82, F2, 2, 37) (dual of [(82, 2), 91, 38]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(275, 82, F2, 2, 39) (dual of [(82, 2), 89, 40]-NRT-code) [i]
3No linear OOA(272, 82, F2, 2, 36) (dual of [(82, 2), 92, 37]-NRT-code) [i]Depth Reduction
4No linear OOA(272, 82, F2, 3, 36) (dual of [(82, 3), 174, 37]-NRT-code) [i]
5No linear OOA(272, 82, F2, 4, 36) (dual of [(82, 4), 256, 37]-NRT-code) [i]
6No linear OOA(272, 82, F2, 5, 36) (dual of [(82, 5), 338, 37]-NRT-code) [i]
7No linear OOA(272, 82, F2, 6, 36) (dual of [(82, 6), 420, 37]-NRT-code) [i]
8No linear OOA(272, 82, F2, 7, 36) (dual of [(82, 7), 502, 37]-NRT-code) [i]
9No linear OOA(272, 82, F2, 8, 36) (dual of [(82, 8), 584, 37]-NRT-code) [i]
10No digital (36, 72, 82)-net over F2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2144, 155, F2, 72) (dual of [155, 11, 73]-code) [i]Residual Code