Information on Result #2156242

There is no linear OA(283, 103, F2, 40) (dual of [103, 20, 41]-code), because adding a parity check bit would yield linear OA(284, 104, F2, 41) (dual of [104, 20, 42]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(284, 103, F2, 2, 41) (dual of [(103, 2), 122, 42]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(283, 103, F2, 2, 40) (dual of [(103, 2), 123, 41]-NRT-code) [i]Depth Reduction
3No linear OOA(283, 103, F2, 3, 40) (dual of [(103, 3), 226, 41]-NRT-code) [i]
4No linear OOA(283, 103, F2, 4, 40) (dual of [(103, 4), 329, 41]-NRT-code) [i]
5No linear OOA(283, 103, F2, 5, 40) (dual of [(103, 5), 432, 41]-NRT-code) [i]
6No linear OOA(283, 103, F2, 6, 40) (dual of [(103, 6), 535, 41]-NRT-code) [i]
7No linear OOA(283, 103, F2, 7, 40) (dual of [(103, 7), 638, 41]-NRT-code) [i]
8No linear OOA(283, 103, F2, 8, 40) (dual of [(103, 8), 741, 41]-NRT-code) [i]
9No digital (43, 83, 103)-net over F2 [i]Extracting Embedded Orthogonal Array
10No linear OA(2163, 184, F2, 80) (dual of [184, 21, 81]-code) [i]Residual Code