Information on Result #2156367
There is no linear OA(243, 882, F2, 11) (dual of [882, 839, 12]-code), because 1 times truncation would yield linear OA(242, 881, F2, 10) (dual of [881, 839, 11]-code), but
- the Johnson bound shows that N ≤ 3 665599 724074 302805 329522 142202 000721 517514 932064 311903 135900 467594 762435 130466 592737 752093 993054 472805 837287 282537 850322 657838 514315 559530 293476 643301 000537 677184 673479 000882 325333 584499 701475 837228 843410 110984 880687 281997 125066 983537 140724 538553 144920 < 2839 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.