Information on Result #2156386
There is no linear OA(247, 1534, F2, 11) (dual of [1534, 1487, 12]-code), because 1 times truncation would yield linear OA(246, 1533, F2, 10) (dual of [1533, 1487, 11]-code), but
- the Johnson bound shows that N ≤ 4272 982533 428077 145652 502156 057642 566066 766166 013422 349585 828723 242552 439501 934590 252246 815182 921980 060077 789238 544818 305694 107894 608845 495297 207151 557782 684659 510431 771598 433912 514585 447698 063545 591350 618086 472079 714608 384777 191829 220731 827870 233907 308068 945039 411887 075888 029940 118146 093306 234182 100515 545102 900470 318849 921835 910605 816707 886935 142515 922552 182054 324423 935296 985293 575846 424385 990195 475424 229832 446246 797719 994516 807767 213382 294799 < 21487 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.