Information on Result #2156480
There is no linear OA(264, 1733, F2, 15) (dual of [1733, 1669, 16]-code), because 1 times truncation would yield linear OA(263, 1732, F2, 14) (dual of [1732, 1669, 15]-code), but
- the Johnson bound shows that N ≤ 26230 353298 782880 418640 580468 192405 642319 589265 903610 042377 479464 560639 345069 171265 837848 026993 487008 939123 387661 556961 162694 158137 634649 349359 641526 339164 552543 588050 812513 015950 151118 874627 162935 858640 234334 378479 021880 204217 354681 409218 185883 434614 182830 627375 391747 036881 778148 516383 322874 519023 208625 049006 071196 025269 523862 366885 556759 278149 344819 440045 480640 572295 951075 079003 218463 917588 632586 978197 406177 472515 788529 067475 074042 088410 878052 824893 658754 811171 268284 118676 840133 473594 937688 618189 < 21669 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.