Information on Result #2156495
There is no linear OA(269, 784, F2, 19) (dual of [784, 715, 20]-code), because 1 times truncation would yield linear OA(268, 783, F2, 18) (dual of [783, 715, 19]-code), but
- the Johnson bound shows that N ≤ 171858 570874 546207 001880 397089 652161 269431 950529 896799 514903 583919 790953 502895 839054 588032 094581 901160 527270 923187 079230 895945 868443 352177 481288 224538 539762 863649 629194 960418 273839 828018 989319 297044 285058 078296 253383 < 2715 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.