Information on Result #2174789

There is no linear OA(2170, 194, F2, 82) (dual of [194, 24, 83]-code), because 2 times code embedding in larger space would yield linear OA(2172, 196, F2, 82) (dual of [196, 24, 83]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2171, 194, F2, 2, 83) (dual of [(194, 2), 217, 84]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2172, 194, F2, 2, 84) (dual of [(194, 2), 216, 85]-NRT-code) [i]
3No linear OOA(2173, 194, F2, 2, 85) (dual of [(194, 2), 215, 86]-NRT-code) [i]
4No linear OOA(2174, 194, F2, 2, 86) (dual of [(194, 2), 214, 87]-NRT-code) [i]
5No linear OOA(2175, 194, F2, 2, 87) (dual of [(194, 2), 213, 88]-NRT-code) [i]
6No linear OOA(2170, 194, F2, 2, 82) (dual of [(194, 2), 218, 83]-NRT-code) [i]Depth Reduction
7No linear OOA(2170, 194, F2, 3, 82) (dual of [(194, 3), 412, 83]-NRT-code) [i]
8No linear OOA(2170, 194, F2, 4, 82) (dual of [(194, 4), 606, 83]-NRT-code) [i]
9No linear OOA(2170, 194, F2, 5, 82) (dual of [(194, 5), 800, 83]-NRT-code) [i]
10No linear OOA(2170, 194, F2, 6, 82) (dual of [(194, 6), 994, 83]-NRT-code) [i]
11No linear OOA(2170, 194, F2, 7, 82) (dual of [(194, 7), 1188, 83]-NRT-code) [i]
12No linear OOA(2170, 194, F2, 8, 82) (dual of [(194, 8), 1382, 83]-NRT-code) [i]
13No digital (88, 170, 194)-net over F2 [i]Extracting Embedded Orthogonal Array