Information on Result #2174791

There is no linear OA(2168, 192, F2, 82) (dual of [192, 24, 83]-code), because 4 times code embedding in larger space would yield linear OA(2172, 196, F2, 82) (dual of [196, 24, 83]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2169, 192, F2, 2, 83) (dual of [(192, 2), 215, 84]-NRT-code) [i]m-Reduction for OOAs
2No linear OOA(2168, 192, F2, 2, 82) (dual of [(192, 2), 216, 83]-NRT-code) [i]Depth Reduction
3No linear OOA(2168, 192, F2, 3, 82) (dual of [(192, 3), 408, 83]-NRT-code) [i]
4No linear OOA(2168, 192, F2, 4, 82) (dual of [(192, 4), 600, 83]-NRT-code) [i]
5No linear OOA(2168, 192, F2, 5, 82) (dual of [(192, 5), 792, 83]-NRT-code) [i]
6No linear OOA(2168, 192, F2, 6, 82) (dual of [(192, 6), 984, 83]-NRT-code) [i]
7No linear OOA(2168, 192, F2, 7, 82) (dual of [(192, 7), 1176, 83]-NRT-code) [i]
8No linear OOA(2168, 192, F2, 8, 82) (dual of [(192, 8), 1368, 83]-NRT-code) [i]
9No digital (86, 168, 192)-net over F2 [i]Extracting Embedded Orthogonal Array