Information on Result #2222158
Linear OA(297, 544, F2, 20) (dual of [544, 447, 21]-code), using 1 times truncation based on linear OA(298, 545, F2, 21) (dual of [545, 447, 22]-code), using
- construction XX applied to C1 = C([507,14]), C2 = C([0,16]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([507,16]) [i] based on
- linear OA(282, 511, F2, 19) (dual of [511, 429, 20]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,14}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(273, 511, F2, 17) (dual of [511, 438, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,16}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(264, 511, F2, 15) (dual of [511, 447, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(297, 282, F2, 2, 20) (dual of [(282, 2), 467, 21]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(297, 282, F2, 3, 20) (dual of [(282, 3), 749, 21]-NRT-code) | [i] | ||
3 | Linear OOA(297, 282, F2, 4, 20) (dual of [(282, 4), 1031, 21]-NRT-code) | [i] | ||
4 | Linear OOA(297, 282, F2, 5, 20) (dual of [(282, 5), 1313, 21]-NRT-code) | [i] | ||
5 | Linear OOA(297, 282, F2, 6, 20) (dual of [(282, 6), 1595, 21]-NRT-code) | [i] | ||
6 | Linear OOA(297, 282, F2, 7, 20) (dual of [(282, 7), 1877, 21]-NRT-code) | [i] | ||
7 | Linear OOA(297, 282, F2, 8, 20) (dual of [(282, 8), 2159, 21]-NRT-code) | [i] | ||
8 | Digital (77, 97, 282)-net over F2 | [i] | ||
9 | Linear OOA(297, 272, F2, 2, 20) (dual of [(272, 2), 447, 21]-NRT-code) | [i] | OOA Folding | |
10 | Linear OOA(297, 181, F2, 3, 20) (dual of [(181, 3), 446, 21]-NRT-code) | [i] | ||
11 | Linear OOA(297, 136, F2, 4, 20) (dual of [(136, 4), 447, 21]-NRT-code) | [i] | ||
12 | Linear OOA(297, 108, F2, 5, 20) (dual of [(108, 5), 443, 21]-NRT-code) | [i] |