Information on Result #2222597
Linear OA(2105, 536, F2, 22) (dual of [536, 431, 23]-code), using 1 times truncation based on linear OA(2106, 537, F2, 23) (dual of [537, 431, 24]-code), using
- construction XX applied to C1 = C([507,16]), C2 = C([0,18]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([507,18]) [i] based on
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,16}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(282, 511, F2, 19) (dual of [511, 429, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(2100, 511, F2, 23) (dual of [511, 411, 24]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,18}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(273, 511, F2, 17) (dual of [511, 438, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2105, 268, F2, 2, 22) (dual of [(268, 2), 431, 23]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(2105, 134, F2, 4, 22) (dual of [(134, 4), 431, 23]-NRT-code) | [i] | ||
3 | Linear OOA(2105, 107, F2, 5, 22) (dual of [(107, 5), 430, 23]-NRT-code) | [i] |