Information on Result #2224431
Linear OA(2153, 271, F2, 44) (dual of [271, 118, 45]-code), using 1 times truncation based on linear OA(2154, 272, F2, 45) (dual of [272, 118, 46]-code), using
- construction XX applied to C1 = C([213,0]), C2 = C([217,2]), C3 = C1 + C2 = C([217,0]), and C∩ = C1 ∩ C2 = C([213,2]) [i] based on
- linear OA(2141, 255, F2, 43) (dual of [255, 114, 44]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−42,−41,…,0}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(2141, 255, F2, 41) (dual of [255, 114, 42]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−38,−37,…,2}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(2149, 255, F2, 45) (dual of [255, 106, 46]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−42,−41,…,2}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2133, 255, F2, 39) (dual of [255, 122, 40]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−38,−37,…,0}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(24, 8, F2, 3) (dual of [8, 4, 4]-code or 8-cap in PG(3,2)), using
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2153, 135, F2, 2, 44) (dual of [(135, 2), 117, 45]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(2153, 90, F2, 3, 44) (dual of [(90, 3), 117, 45]-NRT-code) | [i] | ||
3 | Linear OOA(2153, 54, F2, 5, 44) (dual of [(54, 5), 117, 45]-NRT-code) | [i] |