Information on Result #2225353
Linear OA(2160, 549, F2, 34) (dual of [549, 389, 35]-code), using 1 times truncation based on linear OA(2161, 550, F2, 35) (dual of [550, 389, 36]-code), using
- construction XX applied to Ce(34) ⊂ Ce(28) ⊂ Ce(26) [i] based on
- linear OA(2145, 512, F2, 35) (dual of [512, 367, 36]-code), using an extension Ce(34) of the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2127, 512, F2, 29) (dual of [512, 385, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(2118, 512, F2, 27) (dual of [512, 394, 28]-code), using an extension Ce(26) of the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(21, 5, F2, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2160, 274, F2, 2, 34) (dual of [(274, 2), 388, 35]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(2160, 183, F2, 3, 34) (dual of [(183, 3), 389, 35]-NRT-code) | [i] | ||
3 | Linear OOA(2160, 137, F2, 4, 34) (dual of [(137, 4), 388, 35]-NRT-code) | [i] |