Information on Result #2225865
Linear OA(2242, 264, F2, 105) (dual of [264, 22, 106]-code), using 2 times truncation based on linear OA(2244, 266, F2, 107) (dual of [266, 22, 108]-code), using
- construction XX applied to C1 = C([171,20]), C2 = C([169,16]), C3 = C1 + C2 = C([171,16]), and C∩ = C1 ∩ C2 = C([169,20]) [i] based on
- linear OA(2237, 255, F2, 105) (dual of [255, 18, 106]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−84,−83,…,20}, and designed minimum distance d ≥ |I|+1 = 106 [i]
- linear OA(2235, 255, F2, 103) (dual of [255, 20, 104]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−86,−85,…,16}, and designed minimum distance d ≥ |I|+1 = 104 [i]
- linear OA(2239, 255, F2, 107) (dual of [255, 16, 108]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−86,−85,…,20}, and designed minimum distance d ≥ |I|+1 = 108 [i]
- linear OA(2233, 255, F2, 101) (dual of [255, 22, 102]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−84,−83,…,16}, and designed minimum distance d ≥ |I|+1 = 102 [i]
- linear OA(24, 8, F2, 3) (dual of [8, 4, 4]-code or 8-cap in PG(3,2)), using
- linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2242, 132, F2, 2, 105) (dual of [(132, 2), 22, 106]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(2242, 88, F2, 3, 105) (dual of [(88, 3), 22, 106]-NRT-code) | [i] |