Information on Result #2226473
Linear OA(2204, 536, F2, 46) (dual of [536, 332, 47]-code), using 1 times truncation based on linear OA(2205, 537, F2, 47) (dual of [537, 332, 48]-code), using
- construction XX applied to C1 = C([507,40]), C2 = C([0,42]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([507,42]) [i] based on
- linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,40}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2181, 511, F2, 43) (dual of [511, 330, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(2199, 511, F2, 47) (dual of [511, 312, 48]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,42}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(2172, 511, F2, 41) (dual of [511, 339, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2204, 268, F2, 2, 46) (dual of [(268, 2), 332, 47]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(2204, 134, F2, 4, 46) (dual of [(134, 4), 332, 47]-NRT-code) | [i] | ||
3 | Linear OOA(2204, 107, F2, 5, 46) (dual of [(107, 5), 331, 47]-NRT-code) | [i] |