Information on Result #2788534
Linear OOA(2189, 2097404, F2, 4, 15) (dual of [(2097404, 4), 8389427, 16]-NRT-code), using 21 times duplication based on linear OOA(2188, 2097404, F2, 4, 15) (dual of [(2097404, 4), 8389428, 16]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(226, 254, F2, 4, 7) (dual of [(254, 4), 990, 8]-NRT-code), using
- OOA stacking with additional row [i] based on linear OOA(226, 255, F2, 3, 7) (dual of [(255, 3), 739, 8]-NRT-code), using
- linear OOA(2162, 2097150, F2, 4, 15) (dual of [(2097150, 4), 8388438, 16]-NRT-code), using
- OOA 4-folding [i] based on linear OA(2162, 8388600, F2, 15) (dual of [8388600, 8388438, 16]-code), using
- discarding factors / shortening the dual code based on linear OA(2162, large, F2, 15) (dual of [large, large−162, 16]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 8388607 = 223−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- discarding factors / shortening the dual code based on linear OA(2162, large, F2, 15) (dual of [large, large−162, 16]-code), using
- OOA 4-folding [i] based on linear OA(2162, 8388600, F2, 15) (dual of [8388600, 8388438, 16]-code), using
- linear OOA(226, 254, F2, 4, 7) (dual of [(254, 4), 990, 8]-NRT-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2189, 1678911, F2, 5, 15) (dual of [(1678911, 5), 8394366, 16]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(2189, 1678911, F2, 6, 15) (dual of [(1678911, 6), 10073277, 16]-NRT-code) | [i] | ||
3 | Linear OOA(2189, 1678911, F2, 7, 15) (dual of [(1678911, 7), 11752188, 16]-NRT-code) | [i] | ||
4 | Linear OOA(2189, 1678911, F2, 8, 15) (dual of [(1678911, 8), 13431099, 16]-NRT-code) | [i] | ||
5 | Digital (174, 189, 1678911)-net over F2 | [i] |