Information on Result #520780
There is no (106, 210, 223)-net in base 2, because extracting embedded orthogonal array would yield OA(2210, 223, S2, 104), but
- the linear programming bound shows that M ≥ 26 959946 667150 639794 667015 087019 630673 637144 422540 572481 103610 249216 / 16165 > 2210 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (106, 211, 223)-net in base 2 | [i] | m-Reduction | |
2 | No (106, 212, 223)-net in base 2 | [i] | ||
3 | No (106, 213, 223)-net in base 2 | [i] | ||
4 | No (106, 214, 223)-net in base 2 | [i] | ||
5 | No (106, 215, 223)-net in base 2 | [i] | ||
6 | No (106, 216, 223)-net in base 2 | [i] | ||
7 | No (106, 217, 223)-net in base 2 | [i] | ||
8 | No (106, 218, 223)-net in base 2 | [i] | ||
9 | No (106, 219, 223)-net in base 2 | [i] | ||
10 | No (106, 220, 223)-net in base 2 | [i] | ||
11 | No (106, 221, 223)-net in base 2 | [i] | ||
12 | No (106, 222, 223)-net in base 2 | [i] | ||
13 | No (106, 223, 223)-net in base 2 | [i] | ||
14 | No (106, 224, 223)-net in base 2 | [i] | ||
15 | No (106, 225, 223)-net in base 2 | [i] | ||
16 | No (106, 226, 223)-net in base 2 | [i] | ||
17 | No (106, 227, 223)-net in base 2 | [i] | ||
18 | No (106, 228, 223)-net in base 2 | [i] | ||
19 | No (106, 229, 223)-net in base 2 | [i] | ||
20 | No (106, 230, 223)-net in base 2 | [i] | ||
21 | No (106, 231, 223)-net in base 2 | [i] | ||
22 | No (106, 232, 223)-net in base 2 | [i] | ||
23 | No (106, 233, 223)-net in base 2 | [i] | ||
24 | No (106, 234, 223)-net in base 2 | [i] | ||
25 | No (106, 235, 223)-net in base 2 | [i] | ||
26 | No (106, 236, 223)-net in base 2 | [i] | ||
27 | No (106, 237, 223)-net in base 2 | [i] | ||
28 | No (106, 238, 223)-net in base 2 | [i] | ||
29 | No (106, 239, 223)-net in base 2 | [i] |