Information on Result #520991
There is no (130, 238, 287)-net in base 2, because extracting embedded orthogonal array would yield OA(2238, 287, S2, 108), but
- the linear programming bound shows that M ≥ 2 133520 632200 595168 112459 587583 515002 010526 895398 363193 388655 973626 286863 730797 742512 930816 / 4 628313 007677 734375 > 2238 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (130, 239, 287)-net in base 2 | [i] | m-Reduction | |
2 | No (130, 240, 287)-net in base 2 | [i] | ||
3 | No (130, 241, 287)-net in base 2 | [i] | ||
4 | No (130, 242, 287)-net in base 2 | [i] | ||
5 | No (130, 243, 287)-net in base 2 | [i] | ||
6 | No (130, 244, 287)-net in base 2 | [i] | ||
7 | No (130, 245, 287)-net in base 2 | [i] | ||
8 | No (130, 246, 287)-net in base 2 | [i] | ||
9 | No (130, 247, 287)-net in base 2 | [i] | ||
10 | No (130, 248, 287)-net in base 2 | [i] | ||
11 | No (130, 249, 287)-net in base 2 | [i] | ||
12 | No (130, 250, 287)-net in base 2 | [i] | ||
13 | No (130, 251, 287)-net in base 2 | [i] | ||
14 | No (130, 252, 287)-net in base 2 | [i] | ||
15 | No (130, 253, 287)-net in base 2 | [i] | ||
16 | No (130, 254, 287)-net in base 2 | [i] | ||
17 | No (130, 255, 287)-net in base 2 | [i] | ||
18 | No (130, 256, 287)-net in base 2 | [i] | ||
19 | No (130, 257, 287)-net in base 2 | [i] | ||
20 | No (130, 258, 287)-net in base 2 | [i] | ||
21 | No (130, 259, 287)-net in base 2 | [i] | ||
22 | No (130, 260, 287)-net in base 2 | [i] |