Information on Result #522827

There is no (0, 3, 9)-net in base 7, because extracting embedded orthogonal array would yield OA(73, 9, S7, 3), but

Mode: Bound.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No (0, 4, 9)-net in base 7 [i]m-Reduction
2No (0, 5, 9)-net in base 7 [i]
3No (0, 6, 9)-net in base 7 [i]
4No (0, 7, 9)-net in base 7 [i]
5No (0, 8, 9)-net in base 7 [i]
6No (0, 9, 9)-net in base 7 [i]
7No (0, 10, 9)-net in base 7 [i]
8No (0, 11, 9)-net in base 7 [i]
9No (0, 12, 9)-net in base 7 [i]
10No (0, 13, 9)-net in base 7 [i]
11No (0, 14, 9)-net in base 7 [i]
12No (0, 15, 9)-net in base 7 [i]
13No (0, 16, 9)-net in base 7 [i]
14No (0, 17, 9)-net in base 7 [i]
15No (0, 18, 9)-net in base 7 [i]
16No (0, 19, 9)-net in base 7 [i]
17No (0, 20, 9)-net in base 7 [i]
18No (0, 21, 9)-net in base 7 [i]
19No (0, 22, 9)-net in base 7 [i]
20No (0, 23, 9)-net in base 7 [i]
21No (0, 24, 9)-net in base 7 [i]
22No (0, 25, 9)-net in base 7 [i]
23No (0, 26, 9)-net in base 7 [i]
24No (0, 27, 9)-net in base 7 [i]
25No (0, 28, 9)-net in base 7 [i]
26No (0, 29, 9)-net in base 7 [i]
27No (0, 30, 9)-net in base 7 [i]
28No (0, 31, 9)-net in base 7 [i]
29No (0, 32, 9)-net in base 7 [i]
30No (0, 33, 9)-net in base 7 [i]
31No (0, 34, 9)-net in base 7 [i]
32No (0, 35, 9)-net in base 7 [i]
33No (0, 36, 9)-net in base 7 [i]
34No (0, 37, 9)-net in base 7 [i]
35No (0, 38, 9)-net in base 7 [i]
36No (0, 39, 9)-net in base 7 [i]
37No (0, 40, 9)-net in base 7 [i]
38No (0, 41, 9)-net in base 7 [i]
39No (0, 42, 9)-net in base 7 [i]
40No (0, 43, 9)-net in base 7 [i]
41No (0, 44, 9)-net in base 7 [i]
42No (0, 45, 9)-net in base 7 [i]
43No (0, 46, 9)-net in base 7 [i]
44No (0, 47, 9)-net in base 7 [i]
45No (0, 48, 9)-net in base 7 [i]
46No (0, 49, 9)-net in base 7 [i]
47No (0, 50, 9)-net in base 7 [i]
48No (0, 51, 9)-net in base 7 [i]
49No (0, 52, 9)-net in base 7 [i]
50No (0, 53, 9)-net in base 7 [i]
51No (0, 54, 9)-net in base 7 [i]
52No (0, 55, 9)-net in base 7 [i]
53No (0, 56, 9)-net in base 7 [i]
54No (0, 57, 9)-net in base 7 [i]
55No (0, 58, 9)-net in base 7 [i]
56No (0, 59, 9)-net in base 7 [i]
57No (0, 60, 9)-net in base 7 [i]
58No (0, 61, 9)-net in base 7 [i]
59No (0, 62, 9)-net in base 7 [i]
60No (0, 63, 9)-net in base 7 [i]
61No (0, 64, 9)-net in base 7 [i]
62No (0, 65, 9)-net in base 7 [i]
63No (0, 66, 9)-net in base 7 [i]
64No (0, 67, 9)-net in base 7 [i]
65No (0, 68, 9)-net in base 7 [i]
66No (0, 69, 9)-net in base 7 [i]
67No (0, 70, 9)-net in base 7 [i]
68No (0, 71, 9)-net in base 7 [i]
69No (0, 72, 9)-net in base 7 [i]
70No (0, 73, 9)-net in base 7 [i]
71No (0, 74, 9)-net in base 7 [i]
72No (0, 75, 9)-net in base 7 [i]
73No (0, 76, 9)-net in base 7 [i]
74No (0, 77, 9)-net in base 7 [i]
75No (0, 78, 9)-net in base 7 [i]
76No (0, 79, 9)-net in base 7 [i]
77No (0, 80, 9)-net in base 7 [i]
78No (0, 81, 9)-net in base 7 [i]
79No (0, 82, 9)-net in base 7 [i]
80No (0, 83, 9)-net in base 7 [i]
81No (0, 84, 9)-net in base 7 [i]
82No (0, 85, 9)-net in base 7 [i]
83No (0, 86, 9)-net in base 7 [i]
84No (0, 87, 9)-net in base 7 [i]
85No (0, 88, 9)-net in base 7 [i]
86No (0, 89, 9)-net in base 7 [i]
87No (0, 90, 9)-net in base 7 [i]
88No (0, 91, 9)-net in base 7 [i]
89No (0, 92, 9)-net in base 7 [i]
90No (0, 93, 9)-net in base 7 [i]
91No (0, 94, 9)-net in base 7 [i]
92No (0, 95, 9)-net in base 7 [i]
93No (0, 96, 9)-net in base 7 [i]
94No (0, 97, 9)-net in base 7 [i]
95No (0, 98, 9)-net in base 7 [i]
96No (0, 99, 9)-net in base 7 [i]
97No (0, 100, 9)-net in base 7 [i]
98No (0, 101, 9)-net in base 7 [i]
99No (0, 102, 9)-net in base 7 [i]
100No (0, 103, 9)-net in base 7 [i]
101No (0, 104, 9)-net in base 7 [i]
102No (0, 105, 9)-net in base 7 [i]
103No (0, 106, 9)-net in base 7 [i]
104No (0, 107, 9)-net in base 7 [i]
105No (0, 108, 9)-net in base 7 [i]
106No (0, 109, 9)-net in base 7 [i]
107No (0, 110, 9)-net in base 7 [i]