Information on Result #546201
There is no linear OA(2135, 182, F2, 64) (dual of [182, 47, 65]-code), because residual code would yield OA(271, 117, S2, 32), but
- the linear programming bound shows that M ≥ 436299 229870 540803 344540 378506 426337 722368 / 173 222223 038567 257555 > 271 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2136, 183, F2, 65) (dual of [183, 47, 66]-code) | [i] | Truncation | |
2 | No linear OOA(2136, 182, F2, 2, 65) (dual of [(182, 2), 228, 66]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2135, 182, F2, 2, 64) (dual of [(182, 2), 229, 65]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2135, 182, F2, 3, 64) (dual of [(182, 3), 411, 65]-NRT-code) | [i] | ||
5 | No linear OOA(2135, 182, F2, 4, 64) (dual of [(182, 4), 593, 65]-NRT-code) | [i] | ||
6 | No linear OOA(2135, 182, F2, 5, 64) (dual of [(182, 5), 775, 65]-NRT-code) | [i] | ||
7 | No linear OOA(2135, 182, F2, 6, 64) (dual of [(182, 6), 957, 65]-NRT-code) | [i] | ||
8 | No linear OOA(2135, 182, F2, 7, 64) (dual of [(182, 7), 1139, 65]-NRT-code) | [i] | ||
9 | No linear OOA(2135, 182, F2, 8, 64) (dual of [(182, 8), 1321, 65]-NRT-code) | [i] | ||
10 | No digital (71, 135, 182)-net over F2 | [i] | Extracting Embedded Orthogonal Array |