Information on Result #546366
There is no linear OA(2179, 200, F2, 88) (dual of [200, 21, 89]-code), because residual code would yield OA(291, 111, S2, 44), but
- the linear programming bound shows that M ≥ 4098 314390 537865 655038 841462 980608 / 1 584999 > 291 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2180, 201, F2, 89) (dual of [201, 21, 90]-code) | [i] | Truncation | |
2 | No linear OOA(2180, 200, F2, 2, 89) (dual of [(200, 2), 220, 90]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2179, 200, F2, 2, 88) (dual of [(200, 2), 221, 89]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2179, 200, F2, 3, 88) (dual of [(200, 3), 421, 89]-NRT-code) | [i] | ||
5 | No linear OOA(2179, 200, F2, 4, 88) (dual of [(200, 4), 621, 89]-NRT-code) | [i] | ||
6 | No linear OOA(2179, 200, F2, 5, 88) (dual of [(200, 5), 821, 89]-NRT-code) | [i] | ||
7 | No linear OOA(2179, 200, F2, 6, 88) (dual of [(200, 6), 1021, 89]-NRT-code) | [i] | ||
8 | No linear OOA(2179, 200, F2, 7, 88) (dual of [(200, 7), 1221, 89]-NRT-code) | [i] | ||
9 | No linear OOA(2179, 200, F2, 8, 88) (dual of [(200, 8), 1421, 89]-NRT-code) | [i] | ||
10 | No digital (91, 179, 200)-net over F2 | [i] | Extracting Embedded Orthogonal Array |