Information on Result #546431
There is no linear OA(2201, 242, F2, 96) (dual of [242, 41, 97]-code), because residual code would yield OA(2105, 145, S2, 48), but
- the linear programming bound shows that M ≥ 727 070369 678229 731686 401086 929362 121333 407744 / 17 521374 765895 > 2105 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2202, 243, F2, 97) (dual of [243, 41, 98]-code) | [i] | Truncation | |
2 | No linear OOA(2202, 242, F2, 2, 97) (dual of [(242, 2), 282, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2201, 242, F2, 2, 96) (dual of [(242, 2), 283, 97]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2201, 242, F2, 3, 96) (dual of [(242, 3), 525, 97]-NRT-code) | [i] | ||
5 | No linear OOA(2201, 242, F2, 4, 96) (dual of [(242, 4), 767, 97]-NRT-code) | [i] | ||
6 | No linear OOA(2201, 242, F2, 5, 96) (dual of [(242, 5), 1009, 97]-NRT-code) | [i] | ||
7 | No linear OOA(2201, 242, F2, 6, 96) (dual of [(242, 6), 1251, 97]-NRT-code) | [i] | ||
8 | No linear OOA(2201, 242, F2, 7, 96) (dual of [(242, 7), 1493, 97]-NRT-code) | [i] | ||
9 | No linear OOA(2201, 242, F2, 8, 96) (dual of [(242, 8), 1735, 97]-NRT-code) | [i] | ||
10 | No digital (105, 201, 242)-net over F2 | [i] | Extracting Embedded Orthogonal Array | |
11 | No linear OA(2202, 264, F2, 96) (dual of [264, 62, 97]-code) | [i] | Construction Y1 (Bound) |