Information on Result #546505
There is no linear OA(2240, 253, F2, 120) (dual of [253, 13, 121]-code), because residual code would yield OA(2120, 132, S2, 60), but
- the linear programming bound shows that M ≥ 16503 694795 665515 477973 668460 440758 255616 / 10323 > 2120 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2241, 254, F2, 121) (dual of [254, 13, 122]-code) | [i] | Truncation | |
2 | No linear OOA(2241, 253, F2, 2, 121) (dual of [(253, 2), 265, 122]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2243, 253, F2, 2, 123) (dual of [(253, 2), 263, 124]-NRT-code) | [i] | ||
4 | No linear OOA(2244, 253, F2, 2, 124) (dual of [(253, 2), 262, 125]-NRT-code) | [i] | ||
5 | No linear OOA(2245, 253, F2, 2, 125) (dual of [(253, 2), 261, 126]-NRT-code) | [i] | ||
6 | No linear OOA(2246, 253, F2, 2, 126) (dual of [(253, 2), 260, 127]-NRT-code) | [i] | ||
7 | No linear OOA(2247, 253, F2, 2, 127) (dual of [(253, 2), 259, 128]-NRT-code) | [i] | ||
8 | No linear OOA(2248, 253, F2, 2, 128) (dual of [(253, 2), 258, 129]-NRT-code) | [i] | ||
9 | No linear OOA(2249, 253, F2, 2, 129) (dual of [(253, 2), 257, 130]-NRT-code) | [i] | ||
10 | No linear OOA(2250, 253, F2, 2, 130) (dual of [(253, 2), 256, 131]-NRT-code) | [i] | ||
11 | No linear OOA(2251, 253, F2, 2, 131) (dual of [(253, 2), 255, 132]-NRT-code) | [i] | ||
12 | No linear OOA(2252, 253, F2, 2, 132) (dual of [(253, 2), 254, 133]-NRT-code) | [i] | ||
13 | No linear OOA(2253, 253, F2, 2, 133) (dual of [(253, 2), 253, 134]-NRT-code) | [i] | ||
14 | No linear OOA(2254, 253, F2, 2, 134) (dual of [(253, 2), 252, 135]-NRT-code) | [i] | ||
15 | No linear OOA(2255, 253, F2, 2, 135) (dual of [(253, 2), 251, 136]-NRT-code) | [i] | ||
16 | No linear OOA(2256, 253, F2, 2, 136) (dual of [(253, 2), 250, 137]-NRT-code) | [i] | ||
17 | No linear OOA(2257, 253, F2, 2, 137) (dual of [(253, 2), 249, 138]-NRT-code) | [i] | ||
18 | No linear OOA(2258, 253, F2, 2, 138) (dual of [(253, 2), 248, 139]-NRT-code) | [i] | ||
19 | No linear OOA(2259, 253, F2, 2, 139) (dual of [(253, 2), 247, 140]-NRT-code) | [i] | ||
20 | No linear OOA(2260, 253, F2, 2, 140) (dual of [(253, 2), 246, 141]-NRT-code) | [i] | ||
21 | No linear OOA(2240, 253, F2, 2, 120) (dual of [(253, 2), 266, 121]-NRT-code) | [i] | Depth Reduction | |
22 | No linear OOA(2240, 253, F2, 3, 120) (dual of [(253, 3), 519, 121]-NRT-code) | [i] | ||
23 | No linear OOA(2240, 253, F2, 4, 120) (dual of [(253, 4), 772, 121]-NRT-code) | [i] | ||
24 | No linear OOA(2240, 253, F2, 5, 120) (dual of [(253, 5), 1025, 121]-NRT-code) | [i] | ||
25 | No linear OOA(2240, 253, F2, 6, 120) (dual of [(253, 6), 1278, 121]-NRT-code) | [i] | ||
26 | No linear OOA(2240, 253, F2, 7, 120) (dual of [(253, 7), 1531, 121]-NRT-code) | [i] | ||
27 | No linear OOA(2240, 253, F2, 8, 120) (dual of [(253, 8), 1784, 121]-NRT-code) | [i] | ||
28 | No digital (120, 240, 253)-net over F2 | [i] | Extracting Embedded Orthogonal Array |