Information on Result #546535
There is no linear OA(2247, 259, F2, 124) (dual of [259, 12, 125]-code), because residual code would yield OA(2123, 134, S2, 62), but
- the linear programming bound shows that M ≥ 2988 104534 524490 882287 758271 510214 606848 / 247 > 2123 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2248, 260, F2, 125) (dual of [260, 12, 126]-code) | [i] | Truncation | |
2 | No linear OOA(2248, 259, F2, 2, 125) (dual of [(259, 2), 270, 126]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2249, 259, F2, 2, 126) (dual of [(259, 2), 269, 127]-NRT-code) | [i] | ||
4 | No linear OOA(2250, 259, F2, 2, 127) (dual of [(259, 2), 268, 128]-NRT-code) | [i] | ||
5 | No linear OOA(2247, 259, F2, 2, 124) (dual of [(259, 2), 271, 125]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(2247, 259, F2, 3, 124) (dual of [(259, 3), 530, 125]-NRT-code) | [i] | ||
7 | No linear OOA(2247, 259, F2, 4, 124) (dual of [(259, 4), 789, 125]-NRT-code) | [i] | ||
8 | No linear OOA(2247, 259, F2, 5, 124) (dual of [(259, 5), 1048, 125]-NRT-code) | [i] | ||
9 | No linear OOA(2247, 259, F2, 6, 124) (dual of [(259, 6), 1307, 125]-NRT-code) | [i] | ||
10 | No linear OOA(2247, 259, F2, 7, 124) (dual of [(259, 7), 1566, 125]-NRT-code) | [i] | ||
11 | No linear OOA(2247, 259, F2, 8, 124) (dual of [(259, 8), 1825, 125]-NRT-code) | [i] | ||
12 | No digital (123, 247, 259)-net over F2 | [i] | Extracting Embedded Orthogonal Array |