Information on Result #546559
There is no linear OA(2260, 279, F2, 128) (dual of [279, 19, 129]-code), because residual code would yield OA(2132, 150, S2, 64), but
- the linear programming bound shows that M ≥ 7654 730789 395636 393332 135297 086550 086927 777792 / 1 285141 > 2132 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2260, 279, F2, 2, 128) (dual of [(279, 2), 298, 129]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2260, 279, F2, 3, 128) (dual of [(279, 3), 577, 129]-NRT-code) | [i] | ||
3 | No linear OOA(2260, 279, F2, 4, 128) (dual of [(279, 4), 856, 129]-NRT-code) | [i] | ||
4 | No linear OOA(2260, 279, F2, 5, 128) (dual of [(279, 5), 1135, 129]-NRT-code) | [i] | ||
5 | No linear OOA(2260, 279, F2, 6, 128) (dual of [(279, 6), 1414, 129]-NRT-code) | [i] | ||
6 | No linear OOA(2260, 279, F2, 7, 128) (dual of [(279, 7), 1693, 129]-NRT-code) | [i] | ||
7 | No linear OOA(2260, 279, F2, 8, 128) (dual of [(279, 8), 1972, 129]-NRT-code) | [i] | ||
8 | No digital (132, 260, 279)-net over F2 | [i] | Extracting Embedded Orthogonal Array |