Information on Result #546559

There is no linear OA(2260, 279, F2, 128) (dual of [279, 19, 129]-code), because residual code would yield OA(2132, 150, S2, 64), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2260, 279, F2, 2, 128) (dual of [(279, 2), 298, 129]-NRT-code) [i]Depth Reduction
2No linear OOA(2260, 279, F2, 3, 128) (dual of [(279, 3), 577, 129]-NRT-code) [i]
3No linear OOA(2260, 279, F2, 4, 128) (dual of [(279, 4), 856, 129]-NRT-code) [i]
4No linear OOA(2260, 279, F2, 5, 128) (dual of [(279, 5), 1135, 129]-NRT-code) [i]
5No linear OOA(2260, 279, F2, 6, 128) (dual of [(279, 6), 1414, 129]-NRT-code) [i]
6No linear OOA(2260, 279, F2, 7, 128) (dual of [(279, 7), 1693, 129]-NRT-code) [i]
7No linear OOA(2260, 279, F2, 8, 128) (dual of [(279, 8), 1972, 129]-NRT-code) [i]
8No digital (132, 260, 279)-net over F2 [i]Extracting Embedded Orthogonal Array