Information on Result #546613

There is no linear OA(3129, 227, F3, 81) (dual of [227, 98, 82]-code), because residual code would yield OA(348, 145, S3, 27), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3130, 228, F3, 82) (dual of [228, 98, 83]-code) [i]Truncation
2No linear OOA(3130, 227, F3, 2, 82) (dual of [(227, 2), 324, 83]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(3131, 227, F3, 2, 83) (dual of [(227, 2), 323, 84]-NRT-code) [i]
4No linear OOA(3129, 227, F3, 2, 81) (dual of [(227, 2), 325, 82]-NRT-code) [i]Depth Reduction
5No linear OOA(3129, 227, F3, 3, 81) (dual of [(227, 3), 552, 82]-NRT-code) [i]
6No linear OOA(3129, 227, F3, 4, 81) (dual of [(227, 4), 779, 82]-NRT-code) [i]
7No linear OOA(3129, 227, F3, 5, 81) (dual of [(227, 5), 1006, 82]-NRT-code) [i]
8No digital (48, 129, 227)-net over F3 [i]Extracting Embedded Orthogonal Array