Information on Result #546711
There is no linear OA(3171, 271, F3, 108) (dual of [271, 100, 109]-code), because residual code would yield OA(363, 162, S3, 36), but
- the linear programming bound shows that M ≥ 30537 376444 154082 792008 033056 093457 463995 561684 102574 748326 099431 937479 049865 570539 909893 549089 121176 962447 114240 / 24160 878961 702993 374371 377103 187944 861163 361489 184695 568441 973584 234745 463135 533607 > 363 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3172, 272, F3, 109) (dual of [272, 100, 110]-code) | [i] | Truncation | |
2 | No linear OA(3173, 273, F3, 110) (dual of [273, 100, 111]-code) | [i] | ||
3 | No linear OOA(3172, 271, F3, 2, 109) (dual of [(271, 2), 370, 110]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3173, 271, F3, 2, 110) (dual of [(271, 2), 369, 111]-NRT-code) | [i] | ||
5 | No linear OOA(3171, 271, F3, 2, 108) (dual of [(271, 2), 371, 109]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3171, 271, F3, 3, 108) (dual of [(271, 3), 642, 109]-NRT-code) | [i] | ||
7 | No linear OOA(3171, 271, F3, 4, 108) (dual of [(271, 4), 913, 109]-NRT-code) | [i] | ||
8 | No linear OOA(3171, 271, F3, 5, 108) (dual of [(271, 5), 1184, 109]-NRT-code) | [i] | ||
9 | No digital (63, 171, 271)-net over F3 | [i] | Extracting Embedded Orthogonal Array |