Information on Result #546769
There is no linear OA(3185, 200, F3, 123) (dual of [200, 15, 124]-code), because residual code would yield OA(362, 76, S3, 41), but
- the linear programming bound shows that M ≥ 347660 486804 616889 071607 220289 701250 / 818741 > 362 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3186, 201, F3, 124) (dual of [201, 15, 125]-code) | [i] | Truncation | |
2 | No linear OA(3187, 202, F3, 125) (dual of [202, 15, 126]-code) | [i] | ||
3 | No linear OOA(3186, 200, F3, 2, 124) (dual of [(200, 2), 214, 125]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3187, 200, F3, 2, 125) (dual of [(200, 2), 213, 126]-NRT-code) | [i] | ||
5 | No linear OOA(3185, 200, F3, 2, 123) (dual of [(200, 2), 215, 124]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3185, 200, F3, 3, 123) (dual of [(200, 3), 415, 124]-NRT-code) | [i] | ||
7 | No linear OOA(3185, 200, F3, 4, 123) (dual of [(200, 4), 615, 124]-NRT-code) | [i] | ||
8 | No linear OOA(3185, 200, F3, 5, 123) (dual of [(200, 5), 815, 124]-NRT-code) | [i] | ||
9 | No digital (62, 185, 200)-net over F3 | [i] | Extracting Embedded Orthogonal Array |