Information on Result #546773
There is no linear OA(3189, 236, F3, 123) (dual of [236, 47, 124]-code), because residual code would yield OA(366, 112, S3, 41), but
- the linear programming bound shows that M ≥ 2 205450 991152 037887 110312 460000 695173 586277 462145 772188 035973 400341 003679 931330 959040 941975 977662 936305 383695 760833 / 59412 964566 920537 132921 376858 809704 483274 406706 974380 628937 872880 712941 577778 621185 > 366 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3190, 237, F3, 124) (dual of [237, 47, 125]-code) | [i] | Truncation | |
2 | No linear OA(3191, 238, F3, 125) (dual of [238, 47, 126]-code) | [i] | ||
3 | No linear OOA(3190, 236, F3, 2, 124) (dual of [(236, 2), 282, 125]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3191, 236, F3, 2, 125) (dual of [(236, 2), 281, 126]-NRT-code) | [i] | ||
5 | No linear OOA(3189, 236, F3, 2, 123) (dual of [(236, 2), 283, 124]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3189, 236, F3, 3, 123) (dual of [(236, 3), 519, 124]-NRT-code) | [i] | ||
7 | No linear OOA(3189, 236, F3, 4, 123) (dual of [(236, 4), 755, 124]-NRT-code) | [i] | ||
8 | No linear OOA(3189, 236, F3, 5, 123) (dual of [(236, 5), 991, 124]-NRT-code) | [i] | ||
9 | No digital (66, 189, 236)-net over F3 | [i] | Extracting Embedded Orthogonal Array |