Information on Result #546812
There is no linear OA(3199, 253, F3, 129) (dual of [253, 54, 130]-code), because residual code would yield OA(370, 123, S3, 43), but
- the linear programming bound shows that M ≥ 40338 240718 208992 350334 953494 510547 694172 549255 456255 885012 220252 474180 796510 882011 301956 798022 532555 972566 923130 139936 591655 932172 328924 227210 945655 281618 925647 476596 995177 / 14 454896 235321 758861 324439 272066 920022 144150 020729 906272 529899 398511 133119 936981 919864 050312 440083 118680 206478 896586 841124 145201 887588 531250 > 370 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3200, 254, F3, 130) (dual of [254, 54, 131]-code) | [i] | Truncation | |
2 | No linear OA(3201, 255, F3, 131) (dual of [255, 54, 132]-code) | [i] | ||
3 | No linear OOA(3200, 253, F3, 2, 130) (dual of [(253, 2), 306, 131]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3201, 253, F3, 2, 131) (dual of [(253, 2), 305, 132]-NRT-code) | [i] | ||
5 | No linear OOA(3199, 253, F3, 2, 129) (dual of [(253, 2), 307, 130]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3199, 253, F3, 3, 129) (dual of [(253, 3), 560, 130]-NRT-code) | [i] | ||
7 | No linear OOA(3199, 253, F3, 4, 129) (dual of [(253, 4), 813, 130]-NRT-code) | [i] | ||
8 | No linear OOA(3199, 253, F3, 5, 129) (dual of [(253, 5), 1066, 130]-NRT-code) | [i] | ||
9 | No digital (70, 199, 253)-net over F3 | [i] | Extracting Embedded Orthogonal Array |