Information on Result #546855
There is no linear OA(3205, 228, F3, 135) (dual of [228, 23, 136]-code), because residual code would yield OA(370, 92, S3, 45), but
- the linear programming bound shows that M ≥ 188 391517 236007 568713 593648 567068 308556 925762 / 64396 265375 > 370 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3206, 229, F3, 136) (dual of [229, 23, 137]-code) | [i] | Truncation | |
2 | No linear OA(3207, 230, F3, 137) (dual of [230, 23, 138]-code) | [i] | ||
3 | No linear OOA(3206, 228, F3, 2, 136) (dual of [(228, 2), 250, 137]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3207, 228, F3, 2, 137) (dual of [(228, 2), 249, 138]-NRT-code) | [i] | ||
5 | No linear OOA(3205, 228, F3, 2, 135) (dual of [(228, 2), 251, 136]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3205, 228, F3, 3, 135) (dual of [(228, 3), 479, 136]-NRT-code) | [i] | ||
7 | No linear OOA(3205, 228, F3, 4, 135) (dual of [(228, 4), 707, 136]-NRT-code) | [i] | ||
8 | No linear OOA(3205, 228, F3, 5, 135) (dual of [(228, 5), 935, 136]-NRT-code) | [i] | ||
9 | No digital (70, 205, 228)-net over F3 | [i] | Extracting Embedded Orthogonal Array |